\qquad

C. U. SHAH UNIVERSITY Winter Examination-2019

Subject Name : Basic Mathematics

Subject Code : 2TE01BMT2
Semester : 1

Date : 16/11/2019

Branch: Diploma (All)

Time : 02:30 To 05:30 Marks : 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) The distance between the points $(1,2)$ and $(2,3)$ is \qquad .
(A) $\sqrt{2}$
(B) $2 \sqrt{2}$
(C) 25
(D) None of these
b) Midpoint of $(6,4)$ and $(4,6)$ is \qquad .
(A) $(-5,5)$
(B) $(5,5)$
(C) $(5,-5)$
(D) $(-5,-5)$
c) If $A(-3,5)$ and $B(2,-4)$ are two points, find slope of $A B$.
(A) $-5 / 9$
(B) $5 / 9$
(C) $-9 / 5$
(D) $9 / 5$
d) Radius of the circle $x^{2}+y^{2}=5$ is \qquad .
(A) 5
(B) $\sqrt{5}$
(C) $5 / 2$
(D) $2 / 5$
e) If $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ then $A+A^{T}=$ \qquad .
(A) $\left[\begin{array}{cc}6 & 10 \\ 9 & 9\end{array}\right]$
(B) $\left[\begin{array}{cc}6 & 9 \\ 10 & 9\end{array}\right]$
(C) $\left[\begin{array}{cc}10 & 9 \\ 9 & 6\end{array}\right]$
(D) $\left[\begin{array}{cc}6 & 9 \\ 9 & 10\end{array}\right]$
f) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $\operatorname{adj} A=$ \qquad .
(A) $\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$
(B) $\left[\begin{array}{cc}-\mathrm{a} & \mathrm{b} \\ \mathrm{c} & -\mathrm{d}\end{array}\right]$
(C) $\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(D) $\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
g) The value of $\left|\begin{array}{ccc}0 & -5 & 3 \\ 0 & 1 & 8 \\ 0 & 2 & 5\end{array}\right|$ is \qquad .
$\begin{array}{llll}\text { (A) } 21 & \text { (B) }-11 & \text { (C) } 0 & \text { (D) None of these }\end{array}$
h) If $A=\left[a_{i j}\right]_{3 \times 4}$ and $B=\left[b_{i j}\right]_{4 \times 2}$ then order of the matrix $A B$ is \qquad .
(A) 2×3
(B) 3×2
(C) 4×2
(D) 2×4
i) Number of terms in the expansion of $\left(2 x+\frac{5}{x}\right)^{7}=$ \qquad -.
(A) 7
(B) 8
(C) 9
(D) none of these
j) $12 \mathrm{C}_{5}=$ \qquad .
(A) 297
(B) 927
(C) 729
(D) 792
k) $\frac{5 \pi}{6}=$ \qquad
(A) 160°
(B) 155°
(C) 150°
(D) 145°

1) $300^{\circ}=$ \qquad Radian
(A) $\frac{5 \pi}{2}$
(B) $\frac{2 \pi}{5}$
(C) $\frac{3 \pi}{5}$
(D) $\frac{5 \pi}{3}$
m) $\sin ^{2} 35^{\circ}+\sin ^{2} 55=$ \qquad
$\begin{array}{llll}\text { (A) }-1 & \text { (B) } 0 & \text { (C) } 1 & \text { (D) None of these }\end{array}$
n) $\operatorname{cosec}\left(-330^{\circ}\right)=$ \qquad
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) -2
(D) 2

Attempt any four questions from Q-2 to Q-8

Attempt all questions

a) Prove that $(12,8),(-2,6)$ and $(6,0)$ are the vertices of an isosceles right angled triangle.
b) Find the equation of a circle passing through point $(-7,1)$ and centre $(-4,-3)$.
c) Find the $7^{\text {th }}$ term of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}$.

Attempt all questions

a) If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}4 & 1 \\ 2 & -3\end{array}\right]$ then prove that $(A+B)^{T}=A^{T}+B^{T}$.
b) If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ then prove that $\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\mathrm{O}$.
c) If $\mathrm{A}(2,3), \mathrm{B}(4,7)$ and $\mathrm{C}(-5,-1)$ are the vertices of $\triangle \mathrm{ABC}$, find the length of its median AD.
Attempt all questions
a) Find the middle term of $\left(2 x^{2}+\frac{1}{3 x}\right)^{6}$.
b) Using binomial theorem, find the approximate value of $\sqrt[3]{128}$ and $\frac{1}{\sqrt{9.18}}$.
c) If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 2\end{array}\right]$ then find AB and BA .

Attempt all questions
a) Find the equation of straight line passing through ($-1,2$) and perpendicular to line $x-3 y+3=0$.
b) If $\mathrm{A}=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$ then prove that $\operatorname{adj} \mathrm{A}=\mathrm{A}$.
c) If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 0 \\ -3 & 0 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}0 & -1 & -3 \\ 3 & 2 & 4\end{array}\right]$ then solve the equation $2(\mathrm{X}+\mathrm{A})+3 \mathrm{~B}=0$.
Q-6 Attempt all questions
a) Solve the following equations by matrix method:
$2 x-y=4$ and $3 x+y=1$
b) Draw the graph of $y=\cos x \quad\left(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right)$.
c) Evaluate: $\sin \left(2 \tan ^{-1} \frac{1}{3}\right)$

Q-8

Attempt all questions
a) Find co-ordinates of the points of trisection of the line segment joining points $\mathrm{A}(4,4)$ and $\mathrm{B}(-2,1)$.
b) Prove that $\cos ^{2} \frac{11 \pi}{4}-\sin ^{2} \frac{11 \pi}{4}-2 \tan \frac{11 \pi}{4}+\sec ^{2} \frac{11 \pi}{4}=4$
c) Prove that $\left(1+\tan 25^{\circ}\right)\left(1+\tan 20^{\circ}\right)=2$.

Attempt all questions

a) Prove that $\frac{\sin 4 x+\sin 5 x+\sin 6 x}{\cos 4 x+\cos 5 x+\cos 6 x}=\tan 5 x$.
b) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$.
c) If two straight lines $\mathrm{A}_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}+\mathrm{C}_{1}=0$ and $\mathrm{A}_{2} \mathrm{x}+\mathrm{B}_{2} \mathrm{y}+\mathrm{C}_{2}=0$ are parallel to each other, prove that $A_{1} B_{2}-A_{2} B_{1}=0$.

